
Guide

Autoscaling and 6 other
Kubernetes automation
challenges

Guide I 2Autoscaling and 6 other Kubernetes automation

Containers and Kubernetes make for a powerful combination to scale applications
in the cloud, but they also introduce significant challenges and complexities that
organizations must solve for if they want reliable, efficient container environments that
support highly available applications.

Automation for container infrastructure has proven to be one of those challenges,
even as organizations mature in their Kubernetes operations. Existing tooling and
processes for scaling cloud infrastructure leaves much to be desired by the DevOps
engineer, who still bears the burden of many manual operating tasks.

The major cloud providers do offer customers core automation capabilities for
deployment, management and scaling of infrastructure through AWS Auto Scaling
Groups (ASGs), GCP Instance groups and Azure Scale sets. However, these have some
limitations, while using them effectively requires expertise that many organizations
don’t have.

Here, we’ll identify and outline hurdles to automation in Kubernetes operations that
are preventing you from building dynamic, self-healing and self-reliant infrastructure
your containers need:

1

2

3

4

5

6

7

Container-driven autoscaling

Managing Autoscaling Groups and Cluster Autoscaler

Using mixed instances and multiple availability zones

Blue/Green and rolling upgrades

Right-sizing application resources

Avoid scale out blackouts during Spot market capacity churn

Maintain spare infrastructure capacity to service dyanamic

https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://cloud.google.com/compute/docs/instance-groups
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/overview

Guide I 3Autoscaling and 6 other Kubernetes automation

Container-driven autoscaling

Kubernetes offer native scaling services for its pods and containers, but it doesn’t
automatically scale infrastructure. As long as there is capacity for healthy pods to
run, Kubernetes will scale and it’s up to the operators to ensure enough compute
has been planned for and provisioned. This approach doesn’t account for actual
resource utilization of containers, and can often result in significant inefficiencies
within your cluster. Instead, infrastructure should benefit from the same flexibility as
the containers it supports, and real-time container requirements should determine
how infrastructure is provisioned. This container-driven approach to autoscaling
ensures that applications have the right resources to scale as much and as quickly as
they need.

Managing Autoscaling Groups and Cluster Autoscaler

AWS Auto scaling groups (and similarly Scale Sets/Instance Groups) are inherently
infrastructure focused and rely on advanced capacity planning. Users try to estimate
what their applications will consume, and then configure their ASGs, which then
work to maintain health based on user-set scaling policies. Scaling decisions made by
ASGs are based only on infrastructure considerations (i.e. the number of nodes and
resource utilization) so users often need to maintain another management layer for
their containers—one that makes decisions based on the state of the workload.

The open source Cluster Autoscaler can be implemented with ASGs as a do-it-
yourself solution that adds more instances to your cluster when resources are
insufficient to meet dynamic workload requirements, however Cluster Autoscaler has
its own set of limitations.

Cluster Autoscaler
will automatically
add more nodes to
your cluster
but overprovisoning
is common and
flexbility in instance
types are limited

1

2

https://spot.io/blog/kubernetes-cluster-autoscaler-features-limitations-and-comparisons-to-ocean-by-spot/
https://spot.io/blog/kubernetes-cluster-autoscaler-features-limitations-and-comparisons-to-ocean-by-spot/

Guide I 4Autoscaling and 6 other Kubernetes automation

Using mixed instances and multiple availability zones

Cloud providers offer a variety of instance families that range in attributes like RAM,
CPU, and disk resources. Having a mixed instance strategy can help ensure maximum
availability, flexibility, and efficiency however implementing mixed instances comes
with some scaling hurdles. While you can scale up the instances in your ASGs based
on metrics like CPU and network utilization, using multiple instance types results
in inconsistent metrics since each instance is using a different kind of resource. An
alternative is to use Cluster Autoscaler, which does allow for mixed instance types
within a node group, but with the limitation that instances need to have the same
capacity (CPU and memory).

Similarly, having instances that span across multiple availability zones is important for
your application’s availability and promotes redundancy, but in practice, a single auto
scaling group cannot span AZs without consideration for rebalancing. Alternatively,
you can manage one ASG per AZ.

It’s common for users to customize their applications for specific environments, but
Kubernetes doesn’t provide any templating mechanism on its own to control common
parameters and many tasks require manual configuration. For example, users can
deploy their application using the kubectl, but to automate the process, it’s best
practice for users to configure a load balancer. When it comes to using computing
power, users need to also configure resource requests on each pod. For instance,
different ASGs are needed for different workload types (small, medium and large, at
minimum) for each availability zone. Users will also need to configure seperate ASGs
if they want to run their workloads using dfferent pricing models (i.e. spot and on-
demand instances) or if you want to run GPU nodes.

3

Guide I 5Autoscaling and 6 other Kubernetes automation

Blue-green and rolling updates

The continuous delivery strategy blue/green deployments can help keep applications
running and reduce risk when software updates are needed, but automating these
processes for deployments in Kubernetes can be challenging. First, having two
environments means DevOps engineers and SREs have to monitor and maintain both
while the application is being upgraded. Users then need to determine and implement
how they’ll ensure newly launched nodes are healthy, what happens during a failure
(rollbacks?), and how pipelines will be monitored, among other considerations.

Like blue/green upgrades, rolling updates enables your application to be updated
quickly and without any downtime. In Kubernetes environments however, support for
rolling upgrades is limited, regardless of Kubernetes provider. It’s a resource intensive
and complicated process for users to implement rolling upgrade especially in multi-
cluster and multi-cloud container environments. Users have to take into account
similar considerations as they do for blue-green updates, including how they will
ensure the success of workload migration, how they will check for compliance and how
to determine new versions of Kubernetes components.

??
What are
blue/green
deployments?

The blue/green
deployment technique is
used to reduce downtime
and risk when updating
software. Two identical
production environments
run, with only one live
(blue) to serve traffic.
As software is updated,
testing takes place on
the environment that is
not live (green), and once
ready, incoming requests
are routed to green
instead of blue.

4

Guide I 6Autoscaling and 6 other Kubernetes automation

Right-sizing application resources

Kubernetes provides users with the ability to define resource guidelines for containers
based on CPU and memory needs, but it can be difficult to define and maintain
these resource requirements for dynamic applications especially in fast scaling
scenarios. Developers will often attempt to configure resource requests based on
a guess (can be inaccurate), trial and error (can be extensive) or simulate with a test
deployment (can be ineffective as test metrics often differ from production usage).
Incorrect provisioning can lead to idle resource and higher operational costs or result
in performance issues if the cluster doesn’t have enough capacity to run on. Most
organizations are unwilling to risk performance, and in order to be prepared for a
scaling burst, will typically overprovision clusters or set pod priorities, leaving some
pods potentially unscheduled.

Avoid scale out blackouts during Spot market capacity churn

While spot instances aren’t for every workload, they have enormous cost saving
benefits and can help make infrastructure run more efficiently if users can effectively
mitigate the risk of using them. Running, monitoring and managing workloads on spot
instances, however, requires specific expertise and significant time to limit disruptions.
Spot market capacity churn during scale out periods is especially difficult to manage,
as handling spot interruptions requires an understanding of and running node-
termination-handler. In the case that request constraints can’t be met (e.g. if you specifcy
a maximum price that is below the current Spot price) or there is not enough capacity,
scale up can be paused or delayed.

Maintain spare infrastructure capacity to service dyanamic
user traffic

When starting a new node, it can take anywhere from 2 minutes to sometimes 30
minutes to boot up the node and declare it healthy enough to run workloads. This
cold start keeps pods waiting to be scheduled, and can result in slow or interrupted
services. Instead, maintaining spare headroom capacity at the infrastructure level
can help users scale their infrastructure quickly, so when pods need to be executed
they can be scheduled immediately. Users can configure this headroom using the
open source cluster over-provisioner and cluster-proportional-autoscaler, but like
other DIY solutions for Kubernetes infrastructure, it is a manual, time-consuming
and complex process.

6

7

The majority
of Kubernetes
workloads are
underutilizing
CPU and
memory,
with 49% of
containers
using less
CPU then
their defined
requests1

49%

1. https://www.datadoghq.com/
container-report/

5

https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#how-can-i-configure-overprovisioning-with-cluster-autoscaler

Contact > sales@spot.io | www.spot.io © 2020 Spot. All rights reserved.

1-13dec20

Automation made easy with
Ocean by Spot

For all the ways that Kubernetes manages container
orchestration, there is still much for the DevOps and Site
Reliability Engineers to worry about when it comes to
operations and infrastructure. Without expertise in the
areas outlined above, Kubernetes environments can quickly
become cloud cost centers, running inefficiently with higher
risk for down time. However, Spot by NetApp offers Ocean, a
Kubernetes data plane manager that automates and optimizes
Day 2 operations. With Ocean, Kubernetes operators focus on
running their workloads, while Ocean automates everything
from container right-sizing and headroom, to blue/green and
rolling updates.

Visit our Ocean product page to learn more about hands-free
container infrastructure.

Ocean

https://spot.io/products/ocean/

