
CloudOps Guide

Automating Kubernetes
infrastructure
Essential automation tools and practical guidance for
building & maintaining scalable, resilient & cost-efficient
cloud-native infrastructure

Guide I 2Automating Kubernetes infrastructure

Introduction
Kubernetes makes it easier to run and deploy applications in the cloud, delivering

significant benefits like speed, agility and cost efficiency. But to unlock those strategic

advantages, you’ll need to navigate the operational hurdles of managing and scaling these

applications and the infrastructure underpinning them.

Kubernetes scales pods and containers as long as there are healthy nodes for them

to run on but leaves provisioning and management of infrastructure up to the user to

solve. Often, this means DevOps engineers take on manual tasks of operationalizing and

optimizing container infrastructure.

If DevOps and platform teams are to avoid becoming completely overwhelmed, it is critical

to think about the long-term operational impact of maintaining and scaling clusters.

For sustained success, and to reap the benefits of the cloud in the long term, users

need to find ways to effectively and efficiently automate cloud native operations

to deliver infrastructure that is performant, highly available and always meets

application demands.

Let’s start by looking at some of the biggest challenges that automation must address

when it comes to managing containerized infrastructure.
95%

85%

Managing
infrastructure
doesn’t
deliver value
DevOps teams feel
that managing
infrastructure
gets in the way of
delivering value

Lack critical
automation
DevOps don’t have
effective container
orchestration in place

Guide I 3Automating Kubernetes infrastructure

The must-solve challenges of
Kubernetes operations
While Kubernetes handles the application scaling and deployment, it doesn’t handle the

underlying cloud infrastructure, nor does Kubernetes and cloud infrastructure speak

the same language. This gap is a fundamental challenge to building properly functioning

Kubernetes environments that can scale with the needs of your business.

Key concerns that ops teams are looking to address
with Kubernetes infrastructure

High availability

The ability to service
SLOs and ensure minimal

to no downtime during
upgrades. This also

involves fast recovery
during inevitable failures.

Developer enablement

A key task of DevOps
and platform teams is to
provision environments
for Dev, QA, and Prod
in a quick, self-service

manner.

Resource utilization

DevOps teams need to
ensure there is enough

capacity for peak times,
and only the required

number of instances are
being utilized at any

given time.

Guide I 4Automating Kubernetes infrastructure

Bridging the gap between
infrastructure & workloads
Workloads describe themselves in ways that are completely different from how

infrastructure describes itself. This mismatch creates a challenge that needs to be solved

when building an optimized Kubernetes environment that can scale with your business.

Infrastructure is usually described in terms of size, families and types of pricing—there are

small, medium, large, and extra-large sized instances. They are available on demand, as

reserved instances, or as excess capacity (such as spot instances).

Meanwhile, Kubernetes workloads speak in terms of CPU/Memory/GPU resource requests

and limits, labels, taints, tolerations, network & storage requirements, and affinities.

Compute
capacity

Container requests
and consumption

vCPU

Memory

GPU

Instance size

Instance family

Instance type

To bridge the gap between infrastructure and workloads, organizations need to

find ways to abstract infrastructure. They need to spend less time on undifferentiated

maintenance tasks, and more time running workloads.

Understanding
compute
purchasing
models

On-demand
instances
Scales up and down
for variable demand,
and has expensive
per-unit costs.

Reserved capacity
Commited future use
that is more affordable
per unit but less flexible.

Spot instances
Discounted spare
capacity that can
be taken away at
any moment.

Guide I 5Automating Kubernetes infrastructure

The DIY Kubernetes data plane
automation stack
Many companies have taken a DIY approach, using open-source and cloud provider

tools to manage container infrastructure. While these require DevOps teams to

learn and operate various tools and processes necessary for building healthy

Kubernetes environments, they do offer a route to automating some of those
critical infrastructure tasks, such as:

Scaling infrastructure up
and down automatically

Handling interruptions

Maintaining capacity for
scaling bursts

Using excess capacity
reliably for cost savings

Rightsizing resources
across pods

Matching workloads with
the right instances

Guide I 6Automating Kubernetes infrastructure

Cluster-autoscaler:
Scaling infrastructure to meet application demands

Challenge
Kubernetes doesn’t handle infrastructure. It just knows the
number of registered and healthy nodes in the cluster and
allocates workloads to them.

This means that once all available nodes are fully allocated, Kubernetes
will keep additional workloads pending until new infrastructure is
present in the cluster.

That makes it the user’s responsibility to scale clusters in and out to
accommodate pending workloads, leading to inefficiency, hands-on work
and the potential for failures.

Solution
Cluster-autoscaler is an open-source tool that is commonly used to
bridge the gap between Autoscaling Groups (AWS) and Kubernetes.

It automatically adjusts the size of your cluster when resources are
insufficient to meet dynamic workload requirements, or when a node is
underutilized and its pods can be placed on an existing node.

Need to know
While cluster-autoscaler is a powerful automation tool, the user
requires a keen understanding of its operational capabilities to
prevent issues, and it still falls on the operations team to establish
processes to handle failures and manage overprovisioning.

If your application utilizes different compute types, you’ll also have to
manage multiple node pools.

Guide I 7Automating Kubernetes infrastructure

Kubernetes scaling challenge:
Provisioning infrastructure is the user’s responsibility

Scale Up - Pod Size to Node Mismatch

Kubernetes

Infrastructure as a Service

C5.LARGE
Intel® Xeon® E5

SKYLAKE

M5.LARGE
Intel® Xeon® E5

C5.2XLARGE
Intel® Xeon® Scalable Processor

SKYLAKE

3 CPU/4GB RAM

Pending

In this diagram a pod is waiting to be scheduled. The underlying infrastructure has
enough space for the pod, which needs 3vCPU and 4GBs of memory, but there isn’t a
single node with enough capacity. Since a pod can only run on a single node, it will wait
to be scheduled until one with enough capacity becomes available.

Guide I 8Automating Kubernetes infrastructure

Node pools:
Scaling in a complex, multi-cluster environment

Challenge
As cloud applications and services grow, with clusters of many
microservices running across regions and availability zones, it is
essential to find a way to scale operations in a way that minimizes
complexity and inefficiency. By managing nodes as groups rather
than individually, software delivery teams can take more control.

Solution
Node pools are a group of nodes in a cluster that all have the same
configuration. Different node pools serve different purposes. Each
node pool would have different instance types, sizes, and families to
cater to changing needs after a cluster is created.

Cluster-autoscaler can manage numerous node pools, giving you the
ability to leverage its capabilities across the different compute types
required by your application.

Need to know
There are limitations with node pools that need to be considered.
Within a node pool all nodes need to be of the same size. Additionally,
if a cluster spans multiple availability zones or regions, changes in one
node pool are replicated across all zones and regions. This can consume
a lot of resources. Similarly, when a node pool is deleted, it is deleted
across all regions and zones.

Guide I 9Automating Kubernetes infrastructure

Node termination handler:
Anticipating & planning for interruptions to workloads

Challenge
Excess capacity – such as AWS Spot Instances – offer a powerful way for
organizations to scale large workloads cost effectively.
However, the challenge with this is to balance the cost benefit
with the potential sudden termination that is part and parcel of
these excess capacity instances. When this happens, the workloads
on the instance needs to be drained or moved to another instance for
uninterrupted processing.

Solution
This is a job for the node termination handler. It listens for
interruptions and automatically transitions workloads from existing
nodes to new nodes so that the workloads can continue execution and
serve their purpose.

Need to know
It is the responsibility of the software delivery team to install node
termination handler, manage updates to it, deal with bugs as they arise,
scale, upgrade, or downgrade as needed. This added overhead can be a
drain on productivity and makes routine maintenance inefficient.

Guide I 10Automating Kubernetes infrastructure

Cluster overprovisioner:
Maintaining capacity for scaling bursts

Challenge
When a cluster has maxed out all the underlying instances provisioned
for it, a new instance needs to be provisioned, which can take two
minutes or more. During this time, the excess pods go into a pending
state until the new instances are ready to host them. The few minutes
it takes to spin up a new instance can significantly impact
time-sensitive workloads and even cause end users to experience
service disruption.

Solution
Cluster-autoscaler has no notion of overprovisioning, so to avoid
this pending state, it can be used in conjunction with cluster
overprovisioner, which allocates a buffer of free instances that can be
utilized when a cluster reaches its limit.

It does this by using Kubernetes’ native capability to assign priority to
pods. In this method, low priority buffer pods are placed in the cluster,
ready to be evicted and replaced with incoming pods of higher priority
when they are scheduled.
Cluster proportional autoscaler can be added to this stack so that as
more worker nodes are added to your deployment the available buffer
size increases proportionally.

Need to know
Cluster overprovisioner allows scheduling of low priority pods,
but it has no intelligence about how to deploy workloads. It can
simply provision infrastructure resources without actually knowing
what workloads require. For example, it doesn’t understand which
workloads are constantly scaling up or down, and it has no context
on how to allocate resources. In this case, the software delivery team
needs to build in logic for cluster overprovisioner to make decisions on
how to better allocate workloads on the available buffer instances. In
other words, deployments need to be clearly defined and the necessary
overprovisioned resources need to be available.

Guide I 11Automating Kubernetes infrastructure

Vertical Pod Autoscaler (VPA):
Rightsizing resources across pods

Challenge
Since Kubernetes doesn’t “see” infrastructure or adjust requests based
on actual usage, it’s common to get into a situation where pods are
either consistently requesting unneeded resources or requesting
insufficient resources.

The first issue results in inefficiencies that will grow with your
environment, the second can result in pods going unscheduled or being
killed, resulting in end-user disruptions.

Solution
Vertical Pod Autoscaler (VPA) is an open-source tool to
manage resource requests and limits for containers within a
cluster to eliminate waste, improve efficiency and prevent
performance issues.

It does this by analyzing the historical resource usage of pods and
automatically rightsizing resource requests and limits accordingly.

Need to know
The challenges with VPA are when updating the available resources for
a pod. VPA restarts all containers in the pod during an update and may
even reprovision these containers on a different node. At times there can
be conflicting policies for a single pod, and these conflicts will need to be
manually resolved.

Guide I 12Automating Kubernetes infrastructure

Bin-packing:
Matching workloads with the right instances

Challenge
We’ve already discussed how important rightsizing is to prevent
overprovisioning resources and improve efficiency.

While rightsizing focuses on aligning resource requests with actual
usage, bin packing focuses on rescheduling pods on underallocated
nodes to drive greater efficiency without affecting performance.

Solution
Collecting metrics comparing requested resources to allocable resources
– using either native cloud provider monitoring tools or open-source
options like Prometheus – can help gain valuable insights.

Cluster-autoscaler comes with some bin packing capabilities, which kick
in when an instance is 50% underallocated.

Need to know
While metrics offer one route to improving utilization, it still leaves
us a long way from automated, proactive bin packing that actively
reschedules pods on nodes with any free capacity to host them.
While cluster autoscaler’s automated bin packing capabilities are
welcome, the 50% threshold means the prospect of considerable
unused capacity remains.

Guide I 13Automating Kubernetes infrastructure

The risk of a DIY Kubernetes data
plane management stack
In a typical organization, the ratio of DevOps engineers to application developers is

imbalanced. A software delivery team of ten people typically supports hundreds of

application developers. DevOps engineers are stretched thin and have an ever-growing list

of developer requirements and Jira tickets to be responded to. Even if a highly productive

software delivery team has initial success and a few quick wins, the ever-changing

demands of the business will become overwhelming. Add to this the shortage of high-

quality DevOps engineers, keeping the team continually well-staffed is a challenge. For all

these reasons, a DIY Kubernetes management stack may just about do the job but is far

from ideal as operations scale.

The alternative is to opt for a commercial container infrastructure platform like Ocean from

Spot by NetApp, which handles the infrastructure plumbing, and allows software delivery

teams to enable better developer experiences.

Automated infrastructure engine
for containers
Spot Ocean frees up software delivery teams from manual maintenance of Kubernetes

clusters, and enables them to focus on improving workflows, and providing a better

developer experience for teams that rely on them. It continually analyzes container

infrastructure to drive better resource allocation and save cloud costs in the process.

Ocean can integrate with all major managed Kubernetes services, and lets you get the

most out of each of them.

Guide I 14Automating Kubernetes infrastructure

The key components of Spot Ocean:

	• Ocean autoscaler: Automatically scales the number of nodes up or down making
sure there are enough resources to run workloads.

Autoscaler takes a container-driven approach where the infrastructure is scaled
according to the Pods’ requirements and constraints.

	• Virtual Node Group: VNGs allow users to configure multiple types of node
pools on the same cluster. They provide a layer of abstraction for different types
of workloads. Ocean enables the use of multiple machine types, sizes, availability
zones, and life cycles within the same cluster. Additionally, it can leverage excess
capacity instances seamlessly, managing their interruptions by draining resources
to new instances immediately.

	• Ocean-controller: This handles interruptions to workloads and ensures
that underlying infrastructure unavailability or failure doesn’t impact running
workloads. It acts as the agent that is located in the cluster and sends relevant
data to Ocean. This data is used to perform actions such as draining excess
capacity instances that are about to be terminated and moving its workloads to a
new instance.

C3.Large

Pods

M3.Large

M4.XXLarge

Contact > sales@spot.io | www.spot.io © 2023 NetApp. All rights reserved.

4-17jul23

	• Headroom: Spare capacity, or headroom, is maintained to ensure that compute
capacity is instantly available to handle scaling bursts. This feature allows the user
to set a buffer of resources to allow Ocean to dynamically adjust infrastructure to
the demands of applications. By understanding the history, metrics and demands
of an application overtime, Ocean maintains the performance and stability of your
applications during traffic spikes while limiting overprovisioning.

	• Cluster roll: Allows updates to the entire cluster or just part of it in rolling
batches. The benefit is uninterrupted workloads.

	• Right-sizing: Ocean analyzes the usage of CPU and memory of container
instances continually and provides recommendations on what should be the
requested resources on a container level. It does this by comparing the current
requests against the actual consumption of resources in each container. This
results in cost savings and better resource utilization.

	• Cost analysis: Ocean tracks cloud spend and enables cost showback to each
team and application so you can have better visibility into cloud expenses and
optimize them as needed. As you scale your usage of Kubernetes beyond Day
2, you need not have your software delivery team spend its best time managing
Kubernetes plumbing tasks. Instead, leverage a serverless container infrastructure
platform like Ocean and free your software delivery teams to better empower your
application developers.

Get hands-on with the leading cloud infrastructure
automation & optimization solution today!

Connect to Spot Ocean and start your free trial today.

mailto:sales%40spot.io?subject=
https://spot.io/?utm_source=na&utm_medium=Guide&utm_campaign=Azure_cost_optimization_guide
https://spot.io/product/ocean/

